Monday, October 28, 2019

Our forests are transforming right before us

Just before the leaves started to turn color and drop to the ground, I wandered around the woods in my backyard and saw something I hadn’t seen in many years. Sunlight was streaming through the canopy and creating large bright patches on the forest floor. What had once been completely shaded during the growing season was no longer as I remembered.
            So I investigated each site, worried that someone had illegally cut down some of the trees on my property. I shouldn’t have been concerned, because what I found was completely
natural. It’s a process that foresters and biologists call succession, and it’s been happening here and in every forest everywhere since the first forests grew. Trees die – whether from disease, age, storms or from beavers or humans cutting them down – and when that happens, sunlight penetrates the forest floor again and new growth emerges.
            In the new patches of sunlight, I found waist-high shrubs of sweet pepperbush, spicebush and mountain laurel where only ferns and mushrooms had previously grown. The sunlight had allowed such rapid growth of new plants that the abundant deer in the area, which had suppressed the growth of so many understory plants, hadn’t been able to keep up.
            As in much of the forested parts of Rhode Island in recent years, the dead trees that led to this new growth were the result of the voracious appetites of gypsy moth, winter moth and forest tent caterpillars. The Rhode Island Department of Environmental Management says that as much as 25 percent of the state’s forests were killed by the insect pests during a three- or four-year period. As in my yard, the dead trees appear in patches scattered across the landscape rather than in large continuous swaths, which means that every forest owner was probably affected, but only in a limited way.
            What’s going to happen next is a big question. The shrubs that grew up in the sunny spots will only grow so tall, and eventually trees will sprout and fill in the canopy and shade out the shrubs, just like it always has. But what tree species will they be? The iconic ones like oaks, maples and birches that used to be there, or something else?
            Local foresters tell me that it’s probably going to be something else.
            New varieties of invasive pest insects are arriving in our area and killing targeted tree species. One is expected to kill all the state’s ash trees in the next decade, another has already wiped out most of our hemlocks, and still another may take out our oaks, just as diseases wiped out all of our chestnut and elm trees long ago.
Scientists believe that these infestations of tree-killing pest insects are likely to worsen in years to come, but that doesn’t mean the forests will become unhealthy. They’ll just change, like so much of the rest of our environment. The changing climate will likely spur the growth of tree species more acclimated to warmer temperatures – like black cherry, yellow poplar and southern varieties of oak and hickory – replacing many of our old favorites.
So don’t fret too much over those dead patches of trees you see across the landscape. Instead, appreciate how the natural process of succession is already stimulating new growth in those patches. And then imagine what that forest will look like a generation or two into the future. It almost certainly won’t be akin to what your grandparents saw.

This article first appeared in The Independent on Oct. 24, 2019.

Tuesday, October 22, 2019

Seafood Apostle

            As a child, Kate Masury said that her favorite food was lobster. Even while earning a degree in environmental studies and later teaching marine conservation, she still proclaimed her love for eating seafood. But her friends saw a conflict in her culinary and conservation passions.
            “They didn’t see how my conservation side and my love for eating seafood fit together,” she said. “But that’s how I became interested in sustainable fisheries. I thought that eating it gave me a closer connection to the ecosystem.”
            A native of Kittery, Maine, who moved to Newport three years ago, Masury is the
program director of Eating with the Ecosystem, a nonprofit group that she said promotes “a place-based approach” to preserving New England’s fisheries.
            “It’s all about eating in balance with the ecosystem, eating diverse species in proportion to their natural abundance,” she explained. “Species don’t exist in isolation from each other; they interact with each other. So if we eat only one or two species, it has cascading effects down the food web.”
            But that’s exactly what most people in coastal New England do. According to a study conducted by Masury and a team of volunteers, although more than 50 species are captured in commercial fisheries in the region, just five species dominate the marketplace – lobster, scallops, soft-shelled clams, cod and haddock.
            “There’s a lot of room for growth if we want to eat in balance with the ecosystem,” she said.
            For instance, whiting is abundant in local waters and captured in great volume by the commercial fishing industry, but almost all of it is shipped to markets in New York. It’s seldom eaten in Rhode Island. Butterfish, scup, dogfish, skate and many others face a similar fate.
            “A lot of consumers don’t know that those species even exist here,” Masury said. “At farms we can see what’s growing, but on the seafood side, a lot is hidden from the average consumer unless they spend a lot of time on the docks. And if people do know they exist, they don’t really know how to cook with them; they’re not sure what the flavor profile is and if they’re going to like it.”
            So Masury is trying to do something about it.
            She hosts a series of public dinners around the region – in conjunction with chefs, fishermen and scientists – that feature local seafood species that are underutilized by local consumers. At each event, a fisherman or scientist talks about the species being served.
            “We try to curate a menu that tells a story about the marine ecosystem,” Masury said. “And people have really liked learning about the different species that call that ecosystem home.”
            She also conducts extensive market research on what local species are available at area seafood markets and grocery stores.
            “There’s not much information about seafood after it hits the dock. No one tracks where it goes once it’s landed. So in order to promote different species, we help to track their availability in the seafood supply chain,” she said.
            Last year she sent citizen scientists to dozens of seafood markets around New England to see what species were available, where they were caught, and how much space was devoted to each. She plans to continue this effort in years to come to track how the availability of local species changes through time.
            “Monkfish used to be underutilized, for example, but now we’re seeing it in markets competing with haddock and cod for price, which means consumers are starting to demand it more,” Masury said. “But we also found that the marketplace consisted of only 25 to 30 percent local species, with the rest from outside the region.”
            To help spread the word about what species are available and how to cook them, Masury has co-authored a cookbook called Simmering the Sea, which provides recipes for such locally abundant species as sea robin, scup, razor clams and slipper limpets. And a food truck in the shape of a boat travels to farmer’s markets and other events to offer cooking demonstrations by area chefs and provide information about local fisheries. She has also started an online seafood club on Facebook and Instagram called New England Seafoodies where people can share recipes, discuss where to buy certain species, and hear from fishermen about what they’re catching.
            “If we eat a wider diversity of species in proportion to their natural abundance, then we have minimal impact on the food web,” Masury concluded. “If we don’t take care of the ecosystems that provide our food and the habitats that our seafood relies on, then we won’t have healthy fisheries or healthy ecosystems.”

This article first appeared in the November 2019 issue of Newport Life magazine.

Tuesday, October 15, 2019

Resilient local coral may help tropical relatives

            The ongoing decline of tropical coral reefs around the world is causing a domino effect that could impact the one-quarter of all marine life that depends on this ecosystem. Reefs are becoming bleached and dying as warming waters force corals to expel the algae that live in their tissues and produce sugars to provide food for the coral.
            A Rhode Island scientist is co-leading a collaborative effort to determine if New England’s only hard coral species – a variety that can survive bleaching – could provide a solution to the coral bleaching problem in the tropics.
            The northern star coral is found in the waters all around the Rhode Island coastline. Its range extends from Cape Cod to the Gulf of Mexico.
            “Some corals in Florida can have hundreds to thousands of individuals in one colony, and they can be 10 to 20 feet high. Here in Rhode Island, most of our coral colonies are about
Northern Star Coral (Roger Williams University)
the size of a silver dollar. They don’t get big, mainly because they don’t grow during the winter,” said Koty Sharp, Roger Williams University associate professor of biology, marine biology and environmental science. “They’re also not super charismatic; they’re not as visually impressive. But under a microscope we see beautiful structures, tentacles, mouths, different colors. So to me they’re beautiful because I can see their inner beauty.”
            Sharp believes that the northern star coral’s adaptability to life in both temperate and tropical waters may provide insight into how corals handle the stress of changing environmental conditions, which could ultimately help tropical corals be resilient to the climate crisis.
            “Because the northern star coral lives in this large latitudinal range, individuals of the same species experience really different temperature changes and really different environmental shifts throughout the year,” she said. “They’re exposed to different thermal regimes – drastic shifts up here and stable temperature conditions down south. That gives us the flexibility to learn more about how an individual’s history or experience of temperatures and water quality conditions may influence the physiology of the organism and how that influences its resilience.”
            Sharp and colleagues from throughout the species’ range are conducting a wide variety of experiments to learn about the symbiotic relationship between algae and the northern star coral, as well as investigations of its thermal resilience, tolerance for heavy metals and how it responds to other threats. Sharp’s focus is on the bacteria that live in and on the coral.
            “The peculiar thing about this species is that because it goes through winters where water temperatures drop to 2 degrees C, they go through a period of dormancy in winter when they retract into their skeleton and shut up for the winter,” she said. “We don’t know much about what happens during that period of inactivity, but from our bacterial data, it looks like there is very little regulation of the surface microbiome of the coral in winter, and then in spring there is a reorganization of the microbiome.
            “We’re focused on finding the processes that happen so they can have this spring awakening,” Sharp added. “Every New Englander can relate to this; what do we do to regroup and reboot? That’s the key to coral’s resilience to such extreme temperatures and conditions that are unfavorable to most coral species.”
            Sharp and a team of Roger Williams undergraduates are conducting several laboratory experiments designed to identify the factors that influence coral health and its relationship with its algal partners. They are also using DNA sequencing to identify the types of bacteria that live in the corals, culturing those bacteria, and determining what role each plays.
            “We’re finding there are bacteria in and on the coral that we think are very important for defense against marine diseases,” said Sharp. “Some are actively inhibiting the growth of potential coral pathogens.”
            How the results of Sharp’s research can be transferred to helping tropical corals become resilient to warming temperatures is uncertain.
            “We’re hoping to learn more about how corals recover from disturbance, whether a thermal disturbance like a warming event or a winter event up here in New England,” Sharp said. “My lab is interested in what that recovery looks like from a microbial perspective. But it’s not necessarily the goal to apply microbes from New England to tropical reefs. What’s more broadly useful is identifying the mechanisms they use for recovery.
            “If bacteria provide the ability to resist or recover from stress, then what’s the biochemistry of that success? It may be as simple as the production of certain chemicals that kill other pathogens. It may be that there are certain compounds the bacteria make in the springtime that support the growth of the coral host. We just don’t know a lot about the functional significance of associated bacteria, but we’re excited to learn more about the partnership and how it can be translated to corals in the tropics,” she said.
            Sharp is pleased with each of the small successes she and her students are achieving, like their recent ability to spawn corals in the lab and create the conditions the larval corals need to settle on a rock and start to grow. This will enable her to grow multiple generations of larval corals that her colleagues around the country can use in their own studies.
            “It’s a New England coral that we can learn a lot from about coastal ecosystems in New England, but we also want to translate our findings to the tropics in new and powerful ways,” Sharp said. “We need all the information we can get.”

This article first appeared in EcoRI.org on October 11, 2019.

Tuesday, October 8, 2019

Improved water quality in upper Narragansett Bay attracts more fish

            Just off Conimicut Point in Warwick, Heather Kinney navigated The Nature Conservancy’s 21-foot workboat to a buoy marking the location of an unbaited fish trap she had set in 14 feet of water four days previously. About the size of a lobster pot, the trap was deployed as part of a research project to document the abundance, diversity and size of the fish that spend at least part of the year in upper Narragansett Bay.
            When Kinney, the Conservancy’s coastal restoration science technician, and colleague
Tim Mooney and Heather Kinney set a fish trap. (Todd McLeish)
Tim Mooney pulled in the trap, it contained three black sea bass, two feisty blue crabs and an oyster toadfish, an ugly golden creature with brown stripes and spots that can survive in poor water quality. True to its name, the toadfish even croaks.
            “The sea bass have dorsal spines and the toadfish will bite, so there’s plenty to be careful of when you’re handling them,” Kinney warned as she and Mooney removed the fish and measured them before tossing them back into the water.
            As Kinney zigzagged back and forth across the upper bay to the 12 trap sites between Rocky Point in Warwick and Watchemocket Cove in East Providence, she and Mooney repeated the process of pulling in traps and setting new ones. The results were usually similar to their first haul, though at several sites they also used eel traps that targeted smaller fish and often captured dozens of juvenile black sea bass and scup. One trap contained more than 20 spider crabs.
            “When the Narragansett Bay Commission reduced the nitrogen output of its wastewater plants by 50 percent, there was no record of how that affected the fish population,” said Kinney. “There was anecdotal evidence that more fish were coming into the area, but no one was quantifying it. So that’s what we’re doing. We want to see what the juvenile fish population is up here. As pollution goes down, we wanted to have a sense for how the populations have changed.”
            With funding from the federal Wildlife and Sport Fish Restoration Program and assistance from the Rhode Island Department of Environmental Management, the fish survey began in 2015 using fine seine nets at 12 locations from Conimicut Point to the Pawtucket boat ramp on the Seekonk River. Two years later the fish trap survey was added. Both surveys are conducted monthly from May to October.
            “I don’t think anyone was expecting to find many fish in the Seekonk River, so everyone is surprised at the number of fish we get there,” Kinney said. “The diversity of species is surprising.”
Because the net mesh is smaller, the seine nets catch the most fish – sometimes thousands of menhaden and silversides, plus summer and winter flounder, pipefish, pufferfish, needlefish, killifish, mummichogs, striped bass, hogchockers and more. Where rivers flow into the bay, they often catch freshwater species like largemouth bass, perch, mullet, bluegill and sunfish.
The abundance of black sea bass in all of the traps is notable, according to Kinney, because it may be a signal of the changing climate. Black sea bass, which prefer warmer waters, were seldom caught in significant numbers in Narragansett Bay until relatively recently. But, she said, most of the fish are in the upper bay because water quality has improved.
“We’ve reduced nutrients and improved water quality, but now we’re seeing how much of the story now is about habitat loss,” added Mooney. “Water quality is better but shoreline habitat is lacking in a lot of places. Fish are returning but the habitat they’re finding isn’t great.”
To learn more about habitat loss, the Conservancy is conducting a video survey of the bottom of Narragansett Bay using a camera attached to a sled that is towed behind a boat. Funded by Rhode Island Sea Grant, the project will identify seafloor habitat in the region – is it muddy, rocky, sandy or cobble – as well as the marine invertebrates that live there and the general health of the habitat. The results of the video survey will help to identify priority areas for habitat restoration.
The first fish habitat restoration project will take place in the waters off Sabin Point in East Providence beginning in late October, when large concrete “reef balls” will be placed just offshore.
“The purpose of the reef balls is to test whether the structures are an effective strategy for increasing juvenile fish survival rates and increasing overall productivity,” Mooney said. “By attracting adult fish, it should also enhance recreational fishing opportunities.”
The fish trap surveys will continue for another 3 to 5 years, while the seine surveys have no scheduled end date.
“These surveys are critically important to understanding the changes taking place in our fish communities,” Kinney said.

This article first appeared in EcoRI.org on October 3, 2019.